Antifreeze Protein Dimer
نویسندگان
چکیده
A naturally occurring tandem duplication of the 7-kDa type III antifreeze protein from Antarctic eel pout (Lycodichthys dearborni) is twice as active as the monomer in depressing the freezing point of a solution. We have investigated the basis for this enhanced activity by producing recombinant analogues of the linked dimer that assess the effects of protein size and the number and area of the ice-binding site(s). The recombinant dimer connected by a peptide linker had twice the activity of the monomer. When one of the two ice-binding sites was inactivated by site-directed mutagenesis, the linked dimer was only 1.2 times more effective than the monomer. When the two monomers were linked through a C-terminal disulfide bond in such a way that their two ice-binding sites were opposite each other and unable to engage the same ice surface simultaneously, the dimer was again only 1.2 times as active as the monomer. We conclude from these analyses that the enhanced activity of the dimer stems from the two ice-binding sites being able to engage to ice at the same time, effectively doubling the area of the ice-binding site.
منابع مشابه
NMR Characterizations of the Ice Binding Surface of an Antifreeze Protein
Antifreeze protein (AFP) has a unique function of reducing solution freezing temperature to protect organisms from ice damage. However, its functional mechanism is not well understood. An intriguing question concerning AFP function is how the high selectivity for ice ligand is achieved in the presence of free water of much higher concentration which likely imposes a large kinetic barrier for pr...
متن کاملArtificial multimers of the type III antifreeze protein. Effects on thermal hysteresis and ice crystal morphology.
A variant of antifreeze protein (AFP) named RD3 from antarctic eel pout (Lycodichthys dearborni) comprises the type III AFP intramolecular dimer, which is known to exhibit a significant enhancement of thermal hysteresis when compared with the type III AFP monomer (Miura, K., Ohgiya, S., Hoshino, T, Nemoto, N., Suetake, T., Miura, A, Spyracopoulos, L., Kondo, H., and Tsuda, S. (2001) J. Biol. Ch...
متن کاملSolution structure of the antifreeze-like domain of human sialic acid synthase.
The structure of the C-terminal antifreeze-like (AFL) domain of human sialic acid synthase was determined by NMR spectroscopy. The structure comprises one alpha- and two single-turn 3(10)-helices and two beta-strands, and is similar to those of the type III antifreeze proteins. Evolutionary trace analyses of the type III antifreeze protein family suggested that the class-specific residues in th...
متن کاملSkin-type antifreeze protein from the shorthorn sculpin, Myoxocephalus scorpius. Expression and characterization of a Mr 9, 700 recombinant protein.
A cDNA clone encoding a presumptive antifreeze protein was isolated from a skin library from shorthorn sculpin, Myoxocephalus scorpius. The clone encodes a 92-residue mature polypeptide (sssAFP-2) without any signal and prosequence, which suggests an intracellular localization. It is the largest alanine-rich, alpha-helical type I antifreeze protein known. A recombinant fusion protein containing...
متن کاملEnvironmental regulation of gene expression. In vitro translation of winter flounder antifreeze messenger RNA.
The serum of winter flounder contains a group of antifreeze peptides which lower the freezing point of their body fluid in the winter. These antifreeze peptides disappear from their serum in the summer when the water temperature rises. Messenger RNA isolated from the liver of flounder collected in January directs the synthesis of predominantly one protein in an in vitro protein synthesis system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003